342 research outputs found

    Ceramide Kinase inhibition blocks IGF-1-mediated survival of otic neurosensory progenitors by impairing AKT phosphorylation

    Full text link
    Sphingolipids are bioactive lipid components of cell membranes with important signal transduction functions in health and disease. Ceramide is the central building block for sphingolipid biosynthesis and is processed to form structurally and functionally distinct sphingolipids. Ceramide can be phosphorylated by ceramide kinase (CERK) to generate ceramide-1-phosphate, a cytoprotective signaling molecule that has been widely studied in multiple tissues and organs, including the developing otocyst. However, little is known about ceramide kinase regulation during inner ear development. Using chicken otocysts, we show that genes for CERK and other enzymes of ceramide metabolism are expressed during the early stages of inner ear development and that CERK is developmentally regulated at the otic vesicle stage. To explore its role in inner ear morphogenesis, we blocked CERK activity in organotypic cultures of otic vesicles with a specific inhibitor. Inhibition of CERK activity impaired proliferation and promoted apoptosis of epithelial otic progenitors. CERK inhibition also compromised neurogenesis of the acoustic-vestibular ganglion. Insulin-like growth factor-1 (IGF-1) is a key factor for proliferation, survival and differentiation in the chicken otocyst. CERK inhibition decreased IGF-1-induced AKT phosphorylation and blocked IGF-1-induced cell survival. Overall, our data suggest that CERK is activated as a central element in the network of anti-apoptotic pro-survival pathways elicited by IGF-1 during early inner ear development.This work was supported by the Spanish Ministerio de Economia y Competitividad, project FEDER/SAF2017-86107-R to IVN and MM.Peer reviewe

    A network of growth and transcription factors controls neuronal differentation and survival in the developing ear

    Get PDF
    Inner ear neurons develop from the otic placode and connect hair cells with central neurons in auditory brain stem nuclei. Otic neurogenesis is a developmental process which can be separated into different cellular states that are characterized by a distinct combination of molecular markers. Neurogenesis is highly regulated by a network of extrinsic and intrinsic factors, whose participation in auditory neurogenesis is discussed. Trophic factors include the fibroblast growth factor, neurotrophins and insulin-like peptide families. The expression domains of transcription factor families and their roles in the regulation of intracellular signaling pathways associated with neurogenesis are also discussed. Understanding and defining the key factors and gene networks in the development and function of the inner ear represents an important step towards defeating deafness. © UBC Press.This work has been supported in part by grants from the Spanish Ministries of Health and Education (PI0-5168 and BFU-200500084), from the Community of Madrid (CAM-PRICIT0530), the Royal Society, DIGNA Biotech and Mutua Madrileña. Hortensia Sánchez-Calderón holds a postdoctoral I3P CSIC- Fondo Social Europeo contract.Peer Reviewe

    Targeting cholesterol homeostasis to fight hearing loss: a new perspective.

    Get PDF
    Sensorineural hearing loss (SNHL) is a major pathology of the inner ear that affects nearly 600 million people worldwide. Despite intensive researches, this major health problem remains without satisfactory solutions. The pathophysiological mechanisms involved in SNHL include oxidative stress, excitotoxicity, inflammation, and ischemia, resulting in synaptic loss, axonal degeneration, and apoptosis of spiral ganglion neurons. The mechanisms associated with SNHL are shared with other neurodegenerative disorders. Cholesterol homeostasis is central to numerous pathologies including neurodegenerative diseases and cholesterol regulates major processes involved in neurons survival and function. The role of cholesterol homeostasis in the physiopathology of inner ear is largely unexplored. In this review, we discuss the findings concerning cholesterol homeostasis in neurodegenerative diseases and whether it should be translated into potential therapeutic strategies for the treatment of SNHL

    Long-term dietary folate deficiency accelerates progressive hearing loss on CBA/Ca mice

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).Dietary folic acid deficiency induced early hearing loss in C57BL/6J mice after two-months, corroborating the epidemiological association previously described between vitamin deficiency and this sensory impairment. However, this strain is prone to early hearing loss, and hence we decided to analyze whether the effects exerted by folate deprivation follow the same pattern in a mouse strain such as CBA/Ca, which is resistant to hearing impairment. Here, we show results of a long-term study on hearing carried out on CBA/Ca mice subjected to dietary folate deprivation. Systemic changes included decreased serum folate levels, hyperhomocysteinemia and signs of anemia in the group fed the folate-deficient diet. Initial signs of hearing loss were detected in this strain after 8-months of vitamin deficiency, and correlated with histological damage in the cochleae. In conclusion, the data presented reinforce the importance of adequate folic acid levels for the auditory system and suggest that the impact of dietary deficiencies may depend on the genetic background.RM was a fellow of the JAE-CSIC predoctoral program. This work was supported by grants of the Ministerio de Economía y Competitividad (SAF2014-53979-R to IV; BFU2009-08977 to MP), the European Union (FP7-AFHELO and TARGEAR to IV).Peer reviewe

    RNA microarray analysis in prenatal mouse cochlea reveals novel IGF-I target genes: implication of MEF2 and FOXM1 transcription factors

    Get PDF
    Background: Insulin-like growth factor-I (IGF-I) provides pivotal cell survival and differentiation signals during inner ear development throughout evolution. Homozygous mutations of human IGF1 cause syndromic sensorineural deafness, decreased intrauterine and postnatal growth rates, and mental retardation. In the mouse, deficits in IGF-I result in profound hearing loss associated with reduced survival, differentiation and maturation of auditory neurons. Nevertheless, little is known about the molecular basis of IGF-I activity in hearing and deafness. Methodology/Principal Findings: A combination of quantitative RT-PCR, subcellular fractionation and Western blotting, along with in situ hybridization studies show IGF-I and its high affinity receptor to be strongly expressed in the embryonic and postnatal mouse cochlea. The expression of both proteins decreases after birth and in the cochlea of E18.5 embryonic Igf1(-/-) null mice, the balance of the main IGF related signalling pathways is altered, with lower activation of Akt and ERK1/2 and stronger activation of p38 kinase. By comparing the Igf1(-/-) and Igf1(+/+) transcriptomes in E18.5 mouse cochleae using RNA microchips and validating their results, we demonstrate the up-regulation of the FoxM1 transcription factor and the misexpression of the neural progenitor transcription factors Six6 and Mash1 associated with the loss of IGF-I. Parallel, in silico promoter analysis of the genes modulated in conjunction with the loss of IGF-I revealed the possible involvement of MEF2 in cochlear development. E18.5 Igf1(+/+) mouse auditory ganglion neurons showed intense MEF2A and MEF2D nuclear staining and MEF2A was also evident in the organ of Corti. At P15, MEF2A and MEF2D expression were shown in neurons and sensory cells. In the absence of IGF-I, nuclear levels of MEF2 were diminished, indicating less transcriptional MEF2 activity. By contrast, there was an increase in the nuclear accumulation of FoxM1 and a corresponding decrease in the nuclear cyclin-dependent kinase inhibitor p27(Kip1). Conclusions/Significance: We have defined the spatiotemporal expression of elements involved in IGF signalling during inner ear development and reveal novel regulatory mechanisms that are modulated by IGF-I in promoting sensory cell and neural survival and differentiation. These data will help us to understand the molecular bases of human sensorineural deafness associated to deficits in IGF-I

    Spatial and temporal segregation of auditory and vestibular neurons in the otic placode

    Get PDF
    This is an article Open Access.The otic placode generates the auditory and vestibular sense organs and their afferent neurons; however, how auditory and vestibular fates are specified is unknown. We have generated a fate map of the otic placode and show that precursors for vestibular and auditory cells are regionally segregated in the otic epithelium. The anterior-lateral portion of the otic placode generates vestibular neurons, whereas the posterior-medial region gives rise to auditory neurons. Precursors for vestibular and auditory sense organs show the same distribution. Thus, different regions of the otic placode correspond to particular sense organs and their innervating neurons. Neurons from contiguous domains rarely intermingle suggesting that the regional organisation of the otic placode dictates positional cues to otic neurons. But, in addition, vestibular and cochlear neurogenesis also follows a stereotyped temporal pattern. Precursors from the anterior-lateral otic placode delaminate earlier than those from its medial-posterior portion. The expression of the proneural genes NeuroM and NeuroD reflects the sequence of neuroblast formation and differentiation. Both genes are transiently expressed in vestibular and then in cochlear neuroblasts, while differentiated neurons express Islet1, Tuj1 and TrkC, but not NeuroM or NeuroD. Together, our results indicate that the position of precursors within the otic placode confers identity to sensory organs and to the corresponding otic neurons. In addition, positional information is integrated with temporal cues that coordinate neurogenesis and sensory differentiation. © 2008 Elsevier Inc. All rights reserved.This work was funded by grants from the Guy's and St Thomas' Charitable Foundation and the BBSRC to AS, BMC2002-00355 CICYT to BA, BFU2005-0084-CICYT and CSIC to IVN, and XT-G03/203 ISCIII MSC to IVN and FG. IG was supported by a predoctoral fellowship from the Eusko Jaularitza.Peer Reviewe

    Spatial and temporal segregation of auditory and vestibular neurons in the otic placode

    Get PDF
    AbstractThe otic placode generates the auditory and vestibular sense organs and their afferent neurons; however, how auditory and vestibular fates are specified is unknown. We have generated a fate map of the otic placode and show that precursors for vestibular and auditory cells are regionally segregated in the otic epithelium. The anterior-lateral portion of the otic placode generates vestibular neurons, whereas the posterior-medial region gives rise to auditory neurons. Precursors for vestibular and auditory sense organs show the same distribution. Thus, different regions of the otic placode correspond to particular sense organs and their innervating neurons. Neurons from contiguous domains rarely intermingle suggesting that the regional organisation of the otic placode dictates positional cues to otic neurons. But, in addition, vestibular and cochlear neurogenesis also follows a stereotyped temporal pattern. Precursors from the anterior-lateral otic placode delaminate earlier than those from its medial-posterior portion. The expression of the proneural genes NeuroM and NeuroD reflects the sequence of neuroblast formation and differentiation. Both genes are transiently expressed in vestibular and then in cochlear neuroblasts, while differentiated neurons express Islet1, Tuj1 and TrkC, but not NeuroM or NeuroD. Together, our results indicate that the position of precursors within the otic placode confers identity to sensory organs and to the corresponding otic neurons. In addition, positional information is integrated with temporal cues that coordinate neurogenesis and sensory differentiation

    Pattern of expression of the jun family of transcription factors during the early development of the inner ear: implications in apoptosis

    Get PDF
    8 pages, 6 figures, 1 table.Jun transcription factors have been implicated in the regulation of cell proliferation, differentiation and apoptosis. We have investigated the relationship between Jun expression and cell death in the developing chicken inner ear. c-jun and junD transcripts were expressed in the epithelium of the otic placode and otic vesicle. c-jun expression was restricted to the dorsal area of the otic pit (stages 14-17), dorsal otic vesicle and cochleo-vestibular ganglion (stages 18-20). junD expression was transient and occurred in the dorsal and upper medial aspects of the otic pit and otic cup, but it was down-regulated in the otic vesicle. A parallel TUNEL analysis revealed that expression of c-jun co-located within areas of intense apoptosis. Furthermore, phosphorylation of c-Jun at serine-63 by Jun amino-terminal-kinases was detected in the dorsal otic pit, otic vesicle and cochleo-vestibular ganglion. c-Jun protein exhibited DNA binding activity, as assessed by gel mobility shift assays. The association between c-Jun and apoptosis was further demonstrated by studying nerve growth factor-induced apoptosis in cultured otic vesicles. Nerve growth factor-induced cell death and c-Jun phosphorylation that were suppressed by insulin-like growth factor-I and by viral-mediated overexpression of Raf, which had survival effects. In conclusion, the precise regulation of the expression and activity of Jun proteins in the otic primordium suggests that it may operate as a fundamental mechanism during organogenesis.L.A. and Y.L. held a CSIC research contract, C.S. was supported by Ministerio de Educación y Cultura and S.C. by the Comunidad de Madrid. This work was supported by grants from Dirección General de Investigación, Ciencia y Tecnología (PM96-0075 and PB95-0086), Europharma (Boehringer Ingelheim Inc.) and Junta de Castilla y León to F.G and I. V.-N.Peer reviewe

    Neuroglial Involvement in Abnormal Glutamate Transport in the Cochlear Nuclei of the Igf1−/− Mouse

    Get PDF
    Insulin-like growth factor 1 (IGF-1) is a powerful regulator of synaptic activity and a deficit in this protein has a profound impact on neurotransmission, mostly on excitatory synapses in both the developing and mature auditory system. Adult Igf1−/− mice are animal models for the study of human syndromic deafness; they show altered cochlear projection patterns into abnormally developed auditory neurons along with impaired glutamate uptake in the cochlear nuclei, phenomena that probably reflect disruptions in neuronal circuits. To determine the cellular mechanisms that might be involved in regulating excitatory synaptic plasticity in 4-month-old Igf1−/− mice, modifications to neuroglia, astroglial glutamate transporters (GLTs) and metabotropic glutamate receptors (mGluRs) were assessed in the cochlear nuclei. The Igf1−/− mice show significant decreases in IBA1 (an ionized calcium-binding adapter) and glial fibrillary acidic protein (GFAP) mRNA expression and protein accumulation, as well as dampened mGluR expression in conjunction with enhanced glutamate transporter 1 (GLT1) expression. By contrast, no differences were observed in the expression of glutamate aspartate transporter (GLAST) between these Igf1−/− mice and their heterozygous or wildtype littermates. These observations suggest that congenital IGF-1 deficiency may lead to alterations in microglia and astrocytes, an upregulation of GLT1, and the downregulation of groups I, II and III mGluRs. Understanding the molecular, biochemical and morphological mechanisms underlying neuronal plasticity in a mouse model of hearing deficits will give us insight into new therapeutic strategies that could help to maintain or even improve residual hearing when human deafness is related to IGF-1 deficiency
    corecore